
Hannes Payer
Google|Chrome|V8
https://research.google.com/pubs/HannesPayer.html

V8 Garbage Collection

Free the
main thread

V8 Orinoco

A generational, moving,
mostly parallel and
concurrent garbage
collector with
incremental fallback.

JS GC JS

JS JS JS

GC

GC

Main

Main
GC GC

GC

GC

Young
Generation

Old
Generation

Surviving objects

are promoted

Most objects
will die
young.

V8 Heap Architecture

Allocation sites can dynamically change tenuring decisions
[Memento mori: dynamic allocation-site-based

optimizations ISMM’15]

New objects can be statically tenured

New objects are

allocated here

by default

V8 Heap Architecture

Regular Pages
- 256K right now
- Meta-data page header:

marking bitmap,
remembered set, etc.

- Fast page lookup mechanism
from objects

- Page-based parallelization

Large Objects
- Arbitrary size
- Young or old generation
- Slow page lookup mechanism

from within large objects

Header
o1

o2

o3

Young Generation GC
- Up to 16M
- Semi-space
- Parallel Scavenger
- Alternative minor

Mark-Compact --minor-mc

V8 Orinoco Features

Full GC
- Old & Young Generation
- Concurrent, parallel &

incremental marking
- Concurrent, parallel &

incremental sweeping
- Parallel compaction

Scavenger
- Single-pass over the young

generation
- Fast when most objects die

young
- Slow when many objects

survive (99%tile)

Young Generation Garbage Collector

Minor Mark-Compact
- Two passes over the young

generation
- Copy-free promotion
- Too slow on the common

cases
- Faster on the higher

%tiles

Scavenger
- Single-pass over the young

generation
- Fast when most objects die

young
- Slow when many objects

survive (99%tile)

Young Generation Garbage Collector

Minor Mark-Compact
- Two passes over the young

generation
- Copy-free promotion
- Too slow on the common

cases
- Faster on the higher

%tiles

?

V8 Garbage Collection Events

Young G
eneration G

C

JS Execution Time

Young G
eneration G

C

Young G
eneration G

C

Full G
C

Garbage Collection Scheduling

max heap size

limit 2

limit 1

MB

Timetime 1 time 2

Garbage Collection Scheduling

Time

Compute ComputeIdle Idle

Small GC
work on

main
thread

Heavy memory-reducing GC

Idle Time Garbage Collection Scheduling
[PLDI’16, Communications ACM 59(10)]

Garbage Collection Scheduling

High Priority

Regular Priority

Idle

User Input

Compute Incremental
GC Compute

Memory
GC

Priority queues of the main thread task scheduler

Reduce
Queuing time

of tasks.

Concurrent Marking is a solved problem!

Really!?

Concurrent Marking of
Shape-Changing Objects

Hidden Class
Reference
Reference
Reference
Reference

Free

Free0x000:

0x020:

0x040:

0x060:

0x080:

0x100:

0x120:

Concurrent Marking of
Shape-Changing Objects
[ISMM’19]

Concurrent Marking of
Shape-Changing Objects

Hidden Class
Reference
Reference
Reference

Free
Free

Free0x000:

0x020:

0x040:

0x060:

0x080:

0x100:

0x120:

Concurrent Marking of
Shape-Changing Objects
[ISMM’19]

Shrink Right

Concurrent Marking of
Shape-Changing Objects

Free
Hidden Class

Reference
Reference

Free
Free

Free0x000:

0x020:

0x040:

0x060:

0x080:

0x100:

0x120:

Concurrent Marking of
Shape-Changing Objects
[ISMM’19]

Shrink Left

Concurrent Marking of
Shape-Changing Objects

Free
Hidden Class

Reference
3.14159

Free
Free

Free0x000:

0x020:

0x040:

0x060:

0x080:

0x100:

0x120:

Concurrent Marking of
Shape-Changing Objects
[ISMM’19]

Change Type

Concurrent Marking of
Shape-Changing Objects

Free
Hidden Class

Reference
3.14159

Free
Free

Free0x000:

0x020:

0x040:

0x060:

0x080:

0x100:

0x120:

Concurrent Marking of
Shape-Changing Objects
[ISMM’19]

Change Type

Concurrent Marking of
Shape-Changing Objects

Free
Hidden Class

Reference
3.14159

Free
Free

Free0x000:

0x020:

0x040:

0x060:

0x080:

0x100:

0x120:

Concurrent Marking of
Shape-Changing Objects
[ISMM’19]

Change Type

Tomorrow 14:45 - 15:15
Room 106A

Heap/Garbage Collector Interface
1. Memory allocator: Bump-pointer

2. Write Barriers:
- Old to young generation objects
- References that point to objects which may be compacted
- Marking (Dijkstra-style):

store obj.slot[x] = p

if (load p.color) == white:
 store p.color = grey
 push p

Automatically added by
the Compiler and

Runtime

Write Barrier Elimination:
Allocation Folding Based on

Dominance [ISMM’15]

Cross-Component
Garbage Collection in Chrome

● Chrome’s web browser engine which embeds V8
● JavaScript is used to dynamically modify the DOM
● V8 objects can reference objects on the Blink heap and

vice-versa
● Most of the C++ Blink heap is managed by the precise &

conservative Mark-Sweep-Compact Blink garbage collector
Oilpan for C++ objects

Blink

Challenge:
How do we collect the full transitive closure

of objects spanning both components?

NO MEMORY LEAKS
NO DANGLING POINTERS

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

NO DANGLING POINTERS

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

V8 Blink
a

Traced reference

Weak reference

Root reference

NO MEMORY LEAKS

Incremental Wrapper Tracing:
From V8 to Blink and Back
V8 Blink

a

NO MEMORY LEAKS* *as long as V8
garbage collections

happen
Cross-Component Garbage Collection [OOPSLA’18]
Garbage Collection as a Joint Venture [Communications ACM 62(6)]

Today: Unified V8 and Blink
Garbage Collection
V8 Blink

a

We are building right now a
high-performance garbage
collector for C++.

Thanks!

Hannes Payer
Google|Chrome|V8

https://research.google.com/pubs/HannesPayer.html

Free the
main thread

